ad
当前位置: 中国金投网 > > 热点

量化基金大热背后:首尾业绩差距现鸿沟

文章来源:中国网   阅读量:8694   发布时间:2023-09-15 09:18   阅读量:8173   

关于量化交易的讨论近期成为资本市场的热门话题。9月13日,中国证券报记者从业内获取的最新业绩数据显示,并非所有量化交易基金都取得不菲收益,不少量化基金依然大幅亏损,首尾业绩相差巨大。量化交易似乎并未能让所有进场者都满载而归。

业内人士认为,量化交易模型的搭建是否适应当下市场环境,以及量化交易背后的技术和人才支撑是不同量化交易机构业绩拉开差距的重要原因。

业绩差距悬殊

量化交易在互联网被贴上“好赚钱”的标签,量化交易真的这么“香”吗?

中国证券报记者从业内相关数据监测机构获得的最新数据显示,并非所有量化交易下的基金都取得不菲业绩,不少量化基金甚至出现大幅亏损,量化交易基金首尾业绩差距最大的超过190个百分点。

以量化私募基金为例,私募排排网最新数据显示,截至9月8日,全市场私募量化多头股票策略基金超过1400只。其中,业绩最好的一只基金今年以来的收益率超过150%,而业绩最差的一只基金亏损大于40%,首尾业绩差距超过190个百分点。两只基金所属公司都是规模在5亿元以下的私募基金公司。期货及衍生品策略下的量化CTA基金首尾业绩同样差距悬殊,业绩最好的基金今年以来收益超80%,最差的则是亏损超80%。前者所属基金公司规模在20亿元至50亿元,后者则不超5亿元。

公募基金行业里的量化基金业绩差距则相对较小。若以基金名称中含有“量化”二字的定义为公募量化基金,数据显示,截至9月14日,公募量化基金超过200只。其中,今年以来业绩回报最高的是银华全球新能源车量化优选,收益超过15%;业绩回报最低的为东吴安享量化,亏损超过30%。两者差距接近50个百分点。

业内人士认为,相较于私募量化,公募量化交易操作相对受限,多以中低频为主,可使用的对冲工具也相对较少。基金首尾业绩差距比私募小,或与此有关。而量化私募业绩差距较大不排除受私募产品加杠杆的影响。

量化模型是关键

中国证券报记者在采访中发现,量化模型及其背后的科技、人才力量支撑或是不同量化机构拉开业绩差距的关键因素。

一位从事量化交易长达十余年的基金经理林能认为,不同量化交易机构间最主要的差异还是在阿尔法选股模型的搭建上。选股模型一般是建立在几百个底层因子之上的综合打分模型。关键的工作就是如何能够用系统化、科学的加权方式给因子赋权,让模型能在尽量多的市场环境下有较好的表现。量化交易模型并非设置好后就一成不变,而是需要不断优化。

业内人士表示,模型的关键因子及其权重搭建可谓是量化盈利的一大“商业秘密”,因此,大部分绩优量化私募机构通常在模型设置上都讳莫如深。

量化交易模型大致包括选股模型、风险模型、交易模型,常见模型因子有分析师一致预期因子、市值因子、事件因子、基本面因子等,覆盖选股、买卖交易、回撤控制等投资操作,包含基本面、消息面、技术面等多个方面的分析。相较于个人主观投资而言,量化交易几乎“面面俱到”,加上较少受到情绪干扰等优势,使得量化交易广泛流行。

除了模型设置外,有量化人士认为,市场环境和量化模型的匹配性也是导致不同量化基金业绩迥然不同的重要原因。

一位有过量化基金管理经历的基金经理陈瑾表示,以反转因子为例,这个因子在早年的市场中比较有效,但在近几年的“动量”行情下,反转因子模型明显失效。某量化私募机构总裁赵乐认为,量化投资各个因子会在不同阶段各领风骚,某个阶段优势突出的因子不代表亦适用于其他行情。多策略体系将是量化投资未来发展趋势之一。

科技与人才构筑二重壁垒

如果说拥有适应市场的量化模型是量化交易机构的一大核心竞争壁垒,技术和人才就是不同量化机构拉开业绩差距的第二重竞争壁垒。

量化交易背后的科技力量博弈已成为不少量化机构的角逐战场。以私募基金为例,市场上量化私募基金公司与科技公司配对存在的现象颇为多见,不少私募基金负责人同时也是科技公司负责人。对各类技术人才的招聘也成为量化机构的重头戏,众多机构抛出橄榄枝高薪招聘相关人才,此前就出现过量化开发实习生岗位年薪超百万元、量化私募招聘薪酬不设上限等“抢人”举措。

业内人士表示,科技和人才的支撑对量化交易起着“如虎添翼”的作用。尤其是一些以秒为单位进行操作的量化交易机构,量化系统背后的科技支撑能否跟得上将极大影响投资效率。在技术迭代速度不断加快背景下,能够率先构建起自身技术和人才优势的机构将会领跑行业。

然而,构建此类优势背后需要技术硬件软件等多方面支撑,成本耗资较大,并非所有量化交易机构都有能力承担,因此,不乏量化机构借助外部技术力量。据了解,目前量化系统主要有基金公司自研系统、嵌入券商系统、使用第三方科技公司系统等多种类型。

某科技公司负责人告诉记者,其公司主要是给投资客户提供人工智能交易服务,如价格预测、交易逆向策略生成等。他认为,当前量化交易正开启AI时代。之前的数据研究、因子挖掘构建、模型回测等将可以全部由AI+算力替代,可以用更少的成本和时间实现更大价值,也可用于增强现有量化策略。AI甚至可以实现自营账户全托管,或开启量化交易的新时代。

声明:以上内容为本网站转自其它媒体,相关信息仅为传递更多企业信息之目的,不代表本网观点,亦不代表本网站赞同其观点或证实其内容的真实性。投资有风险,需谨慎。

4694